Data-driven determination of number of discrete conformations in single-particle cryo-EM Single-particle cryo-EM can be used to image heterogeneous samples containing multiple molecular species, different oligomeric states or distinct conformations. This, however, requires expert-user knowledge and trial-and-error experimentation to determine the correct number of conformations present in a mixture. Here, we propose an approach to address the problem of automatically…
Automated systematic evaluation of cryo-EM specimens with SmartScope We present SmartScope, the first framework to streamline, standardize, and automate specimen evaluation in cryo-electron microscopy. SmartScope employs deep-learning-based object detection to identify and classify features suitable for imaging, allowing it to perform thorough specimen screening in a fully automated manner. A web interface provides remote control over the automated operation…
Cryo-ZSSR: multiple-image super-resolution based on deep internal learning We present a multiple-image super-resolution (SR) algorithm based on deep internal learning designed specifically to work under low-SNR conditions typical of cryo-EM data. Our approach leverages the internal image statistics of cryo-EM movies and does not require training on ground-truth data. When applied to a single-particle dataset of apoferritin, we show…
Beam image-shift accelerated data acquisition for near-atomic resolution single-particle cryo-electron tomography To overcome the inherent low-throughput characteristic of CET data collection, improve the resolution of SVA and extend its application to a wider set of samples including low molecular weight targets, here, we: (1) use beam-image shift navigation to multiply the number of regions of interest imaged at each…
Mathematical Theory, Computational Challenges, and Opportunities Structural biology studies the structure and dynamics of macromolecules to broaden our knowledge about the mechanisms of life and impact the drug-discovery process. Owing to recent groundbreaking developments, chiefly in hardware technologies and data processing techniques, many new molecular structures have been elucidated to near-atomic resolutions using cryo-EM. The main goal of this article…
Unsupervised particle sorting for high-resolution single-particle cryo-EM Single-particle cryo-Electron Microscopy (EM) has become a popular technique for determining the structure of challenging biomolecules that are inaccessible to other technologies. Recent advances in automation, both in data collection and data processing, have significantly lowered the barrier for non-expert users to successfully execute the structure determination workflow. Many critical data processing…
Atomic Resolution Cryo-EM Structure of B-galactosidase We report methods to account for radiation damage and local changes in defocus and image drift, enabling visualization of atomic resolution features in a cryo-EM density map of inhibitor-bound b-galactosidase, and measuring of local flexibility of the bound inhibitor using constrained molecular dynamics simulations. Structure, 26(6), 2018.